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ABSTRACT

A normal-mode analysis of axially-magnetized coupled
ferrite lines (CFL) is presented for the first time. This
will permit optimization of propagation characteristics,
impedance-matching and placement of ferrite for de-
vice applications. Potential applications include a novel

distributed planar circulator which does not suffer the

high-frequency limitations of the junction circulator.

I. INTRODUCTION

At higher microwave frequencies, the “drop-in” tech-
nology used to fabricate the classical junction circulator
becomes very demanding and expensive due to the de-
pendency of its diameter on the wavelength. Possibly a
more economic solution is to use a completely new type

of (4-port) circulator [1, 2, 3] which has no such con-
straint. This device consists of a pair of longitudinally-

magnetized coupled ferrite lines (CFL) in cascade with

a 0°/ 180° hybrid coupler.
Although the principle of operation of the CFL

section has been explained by Mazur and Mrozowski
(MM) using the theory of coupled modes [4], satisfac-
tory optimization of the novel circulator has yet to be
achieved. The purpose of this study is to discuss, for
the first time, an alternative and complementary view-
point on the behaviour of the CFL: as the superposition

of two normal modes of the magnetized structure.
Motivations for proposing this method are as fol-

lows. In principle at least, this normal-mode approach
should give better accuracy as no theoretical assump-
tions (such as weak coupling in the coupled-mode
method [5]) are made. Moreover, optimum positioning
of the ferrite layer/slab/rod is best judged from the cir-
cularly/elliptically polarized normal-mode vector field
plots, and for proper matching at the discontinuities the

normal-mode impedances are required. This method,
therefore, must be considered if satisfactory optimiza-
tion of the CFL is to be achieved.

II. THEORY

From Coupled Modes to Normal Modes
mu

MM have found that the even- and odd-modes of the
unrnagnetized CFL become coupled when longitudinal
magnetization is applied to the ferrite [4]. It can be
shown that two dominant modes should result from

this Let Wi~~,~~~~ (z) represent the voltage on each
line for each of the two normaz modes of the magnetized

CFL. Continuing from MM’s analysis in [4], it can be

shown that the phase difference +m~~~ between lines 1
and 2 for each mode are

41 = Lvll(z) – Lb’ii(z)

()17-A~
= –2 arctan –—

c
(1)

where

and C is the
rotropy of the

()r+ A/3
= 2 arctan ——————

c
(2)

r=/- (3)

A~I = P’”’” – Podd
2

(4)

coupling coefficient caused by the gy-
ferrite. Its sign depends on whether the

magnetization is forward or reverse, Subtracting eqn. 1
from 2, it can be shown that,

l@ - 411= 180° (5)

independent of A~ and C. However, +1 and 42 each
does depend on A~ and C. For optimum operation of
the magnetized CFL, /3~uen = /.?odd[4], which results in
the normal-mode condition

$h~= –90°, 42 = +90° (6)

It is intro-eating that, unlike isotropic lines, the phase
difference between the lines for each mode of the mag-

netized CFL is frequency dependent.
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Phase Relations of General Coupled Lines

The question might be asked: why ]42 – #l I = 180°?

Cousider a gene~al pair of coupled lines which sup-
port two clominant modes with propagation constants

~t and ~z, where the phase difference between the lines
for modes 1 and 2 are ~1 and ~z respectively. Let us
define an arbitrary phase difference O between modes 1
and 2. With eJti’t understood, the voltage Vl~n~,~& z()
with peak voltage t~,l~ne, mOde, current l/;ne,mOd~ (z) and
impedance Zline)made for each line and mode is given in
Table 1.

Applying superposition of voltages and currents
to the expressions in Table 1, it can be shown that
the average power Plin, (z) (= ~Re [W,.. (Z) I~ne(Z)]) on
each line is given by

+ ;Vpll vp12
(

& + *) Cos(p,z –8,.2 +8)(7)

“(’) ‘W+%) ++v,21vp22Hl +*)

Xcos(pzz –plz+(++$bz –(/!)l) (8)

line 1 mode 1 VII(2) = VP~~e-~$’”

111(2) = *e-~@”

mode 2 VIZ(Z) = VolZe-~[f12”+6~

Table 1: Expressions for voltages and currents for

each line and mode.

For conservation of power of bounded modes in Iossless
lines, [Pl (z) + P2 (z)] must be constant. This imposes
BOTH of the following conditions:

The condition I$2 – ~1 \ = 180° is therefore a neces-

sary physical condition. As an example, this condition
is obeyed by the even- (0°) and odd- (180°) modes of
symmetrical isotropic lines.

Phase Relations of Symmetrical CFL

If the lines are symmetrical, for each mode we can make
VPII = VP?l = VPIZ = VPZZ= VP, and Zll = 221 = Z~l
and Z1 z = Z22 = Zm2, where “m” stands for “mode”.
If initially Pz (O) = O, (3will work out to be zero. With

these values and the condition l~z – q$lI = 180°, the

total voltage ~in, (z) can be simplified to

Ill(z) = VPe–j/!hz[l + e–j(ezeelz)] (11)

VZ(2) = VPe-~(fi’Z+4’)[1 – e-~@’Z-~’”)j (12)

while eqns. 7 and 8 become

For correct operation of the CFL, we require that when
PI(z) = P2 (z), either the “even-mode” or the “odd-

mode” is seen. When PI(z) = P2(z), we obtain

(BI -?2)z = ;(1 +Zn) rad, n = 0,1,2 ... (15)

When (fll – ~2)2 = ~ rad, then from eqns. 11 and 12
it can be shown that

Lvl– LV2= (#I– 90° [16)

If we have, say, the “odd-mode” at this value of z, then
the values of ~1 and ~z are

~1 = –90°, $fJZ= +90° (17)

as in eqn. 6. Another important relation is that the
required length z is given by (P1 —/?2)Z = ~ rad, com-
plement ary to MM’s Cz = n/4 condition [4].

The graphs of PI(z), P2(z) and [lVI(z) – LV2(Z)]
under these conditions are shown in Fig. 1(a), where
it is seen that the phase difference between lines 1 and
2 is always either 0° or 180°, so that when they have
equal power either the “even” or “odd” mode is seen.
The effect of reversing the direction of magnetization
of the CFL must be obtained from a numerical field

solution, but the same kind of nonreciprocal effects as

in [4] should be observed.

III. NUMERICAL RESULTS

The coupled finline/slotline structure analyzed by
Mazur [6] (see Fig, 1(b)) was solved for its E-field using
a modified version of the finite element method (FEM)
in [7]. The structure was solved for both the unmag-
netized and magnetized cases. Preliminary numerical

results are shown in Figs. 2(a)–(f). The dispersion
diagram for the coupled-slots before and after magne-
tization in Fig. 2(a) confirms that coupling occurs.

In Fig. 2(b), a comparison is made between our
values of A/? (TD) with Mazur’s (M) for the unmag-
netized structure, where ours is shifted up by N 20
rad/m, with A,8 = O at 24GHz instead of at 27.3GHz.
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This may be attributed to the high sensitivity of the
crossover frequency to errors in /3eVen and @Odd,

Figs. 2(d)–(f) show the transverse E-field of the
first (RHCP) mode of the magnetized structure at
23GHz, at values of z which are A/8 apart. The minima
of the slots are x A/4 apart, hence giving #l % –90°.

The values of ~1,2, obtained in this fashion, are
plotted in Fig. 2(c). The normal-mode condition r#1,2 =
+90° is seen to occur at w 23GHz. This difference from
the value of 24GHz in Fig. 2(b) maybe caused by errors
in the judgment of phase difference from the field plots.

Mazur’s values of @l,2 were calculated by substituting
his values of A/? and C from [6] into eqns. 1 and 2.
Note that our values of q51,2, obtained independently

from the fields of each mode, confirm eqn. 10.
Lastly, applying eqn. 15 (with n = 1) to Fig. 2(a)

at 24GHz, the required CFL length will be ss 79.4mm.
This is different from Mazur’s 14.4mm at 27.3GHz [6],
and further work is in hand.

IV. CONCLUSION

It has been shown that, for any pair of coupled lines,

142 – #11 = 180° (eqn. 10). In the case of the magne-
tized CFL, there is a complementary normal-mode un-

derstanding of its behaviour, where the conditions for
optimum operation are C#l,z = +90° and (~1 – @2)L =
$(1 + 2n) rad, where L is the length of the CFL section
and n is an integer. The circular/elliptical polarization
of the two normal modes seem to cause the unusual

modal phase difference between lines. Note that the

present work may also be understood from the CPW
point of view.

Further work would involve determining the
impedance of each normal-mode. Once successfully op-
timized, this distributed circulator would in principle
be compatible with MMICS and therefore would repre-
sent a potential breakthrough in nonreciprocal compo-
nent design.
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Figure 1: (a) Normalized powers PI (z), PZ(z) and phase
difference [LV1 (z) – LV2(z)] for q$I = –90°, q$z = +90°.

(b) Cross-section of CFL section. Dimensions in millime-
ters: a = 7.2, b = 3.4, w = s = 0.5, hl = 0.127, hf = 0.5.

The permit ti.vities are: fird.ine substrate Cd = 2.22, ferrite
slab Cf = 13.5, and saturation magnetization M, = 34o
kA/m. Ferrite is just saturated (Hi = O) (data from [6]).
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Figure Z: Solutions for coupled-slotlines:
(a) Propagation constants, with and without magnetization
(b) A/3 (see eqn. 4), without magnetization
(c) 41,2, with magnetization
(d)-(f) E-field plots of mode 1, A/8 apa~t, with magnetiza-
tion. Field vectors below central strip are Right-Hand Circ.
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