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ABSTRACT

A normal-mode analysis of axially-magnetized coupled
ferrite lines (CFL) is presented for the first time. This
will permit optimization of propagation characteristics,
impedance-matching and placement of ferrite for de-
vice applications. Potential applications include a novel
distributed planar circulator which does not suffer the
high-frequency limitations of the junction circulator.

I. INTRODUCTION

At higher microwave frequencies, the “drop-in” tech-
nology used to fabricate the classical junction circulator
becomes very demanding and expensive due to the de-
pendency of its diameter on the wavelength. Possibly a
more economic solution is to use a completely new type
of (4-port) circulator [1, 2, 3] which has no such con-
straint. This device consists of a pair of longitudinally-
magnetized coupled ferrite lines (CFL) in cascade with
a 0°/180° hybrid coupler.

Although the principle of operation of the CFL
section has been explained by Mazur and Mrozowski
(MM) using the theory of coupled modes [4], satisfac-
tory optimization of the novel circulator has yet to be
achieved. The purpose of this study is to discuss, for
the first time, an alternative and complementary view-
point on the behaviour of the CFL: as the superposition
of two normal modes of the magnetized structure.

Motivations for proposing this method are as fol-
lows. In principle at least, this normal-mode approach
should give better accuracy as no theoretical assump-
tions (such as weak coupling in the coupled-mode
method [5]) are made. Moreover, optimum positioning
of the ferrite layer/slab/rod is best judged from the cir-
cularly /elliptically polarized normal-mode vector field
plots, and for proper matching at the discontinuities the
normal-mode impedances are required. This method,
therefore, must be considered if satisfactory optimiza-
tion of the CFL is to be achieved.
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II. THEORY

From Coupled Modes to Normal Modes

MM have found that the even- and odd-modes of the
unmagnetized CFL become coupled when longitudinal
magnetization is applied to the ferrite [4]. It can be
shown that two dominant modes should result from
this. Let Viine,mode(2) represent the voltage on each
line for each of the two normal modes of the magnetized
CFL. Continuing from MM’s analysis in [4], it can be

shown that the phase difference d,no4. between lines 1
and 2 for each mode are

$1 = LVii(z) — LVau(z)
= —2arctan (E:C—Aé> (1)
d2 = LVia(2) — LVa(2)
= 2arctan (F +CA'B> (2)
where
I = VAB+IC]? (3)
A/3 — /Heven 2—‘ /i)_(id_ (4)

and (' is the coupling coefficient caused by the gy-
rotropy of the ferrite. Its sign depends on whether the
magnetization is forward or reverse. Subtracting eqn. 1
from 2, it can be shown that,

|2 — ¢1] = 180° (5)

independent of A3 and C. However, ¢; and ¢2 each
does depend on A3 and C'. For optimum operation of
the magnetized CFL, Beven = Boaa [4], Which results in
the normal-mode condition

¢1=-90°, ¢ =+90° (6)

It 1s interesting that, unlike isotropic lines, the phage
difference between the lines for each mode of the mag-
netized CFL is frequency dependent.
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Phase Relations of General Coupled Lines

The question might be asked: why [¢ — ¢1] = 180°7

Consider a general pair of coupled lines which sup-
port two dominant modes with propagation constants
B1 and [, where the phase difference between the lines
for modes 1 and 2 are ¢; and ¢o respectively. Let us
define an arbitrary phase difference 8 between modes 1
and 2. With ¢’“! understood, the voltage Viine,mode (2)
with peak voltage V} nne,mode, current Iine mode (z) and
impedance Zine mode for each line and mode is given in
Table 1.

Applying superposition of voltages and currents
to the expressions in Table 1, it can be shown that
the average power Pyn.(z) (= %Re Viene(2)1f;,,.(2)]) on
each line is given by

V2 V2
Pilx pll p12
) =3 (s
1
+§Vp11‘/};12 (Z Zl ) cos(fBzz — Brz +0)(7)
1 V221 V2'> 1
Po(z) = = | B2 4 k22 —V v ( _)
() 2 (ZQI + Zao + g TR + Fno
X cos(fBez — Bz + 6 + ¢ — ¢1) (8)
line I | mode 1 Vii(z) = p11€ ~jpB1z
In{z) = _2'11_13 iB12
mode 2 Via(z) = Vy12e =7 (B22+0)
Lip(z) = 22 Vw e—1(Baz+0)
line 2 | mode 1 Vai(z) = p21e —7(B12+61)
121( )—— Van —](ﬁ1l+¢1)
mode 2 | Vaa(z) = p22e—3(ﬂ"z+9+¢2)
Ioa(2) = Zﬂ%e-](ﬂzz+9+¢2)

Table 1: Expressions for voltages and currents for
each line and mode.
For conservation of power of bounded modes in lossless

lines, [Py(z) + Pa(z)] must be constant. This imposes
BOTH of the following conditions:

1 1 1
7 —_ — = ViV (—- )
Ve11 V12 (Z“ + le) P21 Vp22 Zon 9)
[p2 — ¢1] = 180° (10)
The condition |2 — ¢1] = 180° is therefore a neces-

sary physical condition. As an example, this condition
is obeyed by the even- (0°) and odd- (180°) modes of
symmetrical isotropic lines.

Phase Relations of Symmetrical CFL

If the lines are symmetrical, for each mode we can make
Vi1 = Vpor = Vpr2 = Vpao = Vp, and 71y = Zoy = Zpy
and Zijs = Zas = Zpypae, where “m” stands for “mode”.
If initially P»(0) = 0, ¢ will work out to be zero. With
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these values and the condition |¢s — ¢1] = 1807, the
total voltage Vijn.(2) can be simplified to

Vi(2) Vpe—aﬁlz[l + 6-3’(@23—512)] (11)
Va(z) Ve i (Pretdg I (Paz=F12)] (12)

while egns. 7 and 8 become

1. 1 1

Pi(z) = 5 (“Zm + ~—Zm2) [1 4 cos(Baz — S12)] (13)
1 1

Py(z) = 5‘/1,2 (2—1 + ‘Z;;> [1 - cos(fBaz — ﬁlz)] (14)

For correct operation of the CFL, we require that when
Py(z) = Py(z), either the “even-mode” or the “odd-
mode” is seen. When P;(z) = Pa(z), we obtain

(81— B2z = (1 +2n)rad, n=0,1,2... (15)
When (81 — f2)z = % rad, then from eqns. 11 and 12
it can be shown that

LVi — LVy = ¢y — 90° (16)

If we have, say, the “odd-mode” at this value of z, then
the values of ¢; and ¢, are
¢ = —90°, ¢a = +90° (17)
as in eqn. 6. Another important relation is that the
required length z is given by (81 — f2)z = § rad, com-
plementary to MM’s C'z = = /4 condition [4].

The graphs of P;(z), Po(z) and [£Vi(2) — £Va(2)]
under these conditions are shown in Fig. 1(a), where
it 1s seen that the phase difference between lines 1 and
2 is always either 0° or 180°, so that when they have
equal power either the “even” or “odd” mode is seen.
The effect of reversing the direction of magnetization
of the CFL must be obtained from a numerical field
solution, but the same kind of nonreciprocal effects as
in [4] should be observed.

III. NUMERICAL RESULTS

The coupled finline/slotline structure analyzed by
Mazur [6] (see Fig. 1(b)) was solved for its F-field using
a modified version of the finite element method (FEM)
in [7]. The structure was solved for both the unmag-
netized and magnetized cases. Preliminary numerical
results are shown in Figs. 2(a)—(f). The dispersion
diagram for the coupled-slots before and after magne-
tization in Fig. 2(a) confirms that coupling occurs.

In Fig. 2(b), a comparison is made between our
values of A (TD) with Mazur’s (M) for the unmag-
netized structure, where ours is shifted up by ~ 20
rad/m, with AB = 0 at 24GHz instead of at 27.3GHz.



This may be attributed to the high sensitivity of the
crossover frequency to errors in Seyen and Bogd.

Figs. 2(d)~(f) show the transverse E-field of the
first (RHCP) mode of the magnetized structure at
23GHz, at values of z which are A/8 apart. The minima
of the slots are & A/4 apart, hence giving ¢; ~ —90°,

The values of ¢, 3, obtained in this fashion, are
plotted in Fig. 2(c). The normal-mode condition ¢1 5 =
+90° is seen to occur at & 23GHz. This difference from
the value of 24GHz in Fig. 2(b) may be caused by errors
in the judgment of phase difference from the field plots.
Mazur’s values of ¢; 5 were calculated by substituting
his values of Af and C from [6] into eqns. 1 and 2.
Note that our values of ¢ 2, obtained independently
from the fields of each mode, confirm eqn. 10.

Lastly, applying eqn. 15 (with n = 1) to Fig. 2(a)
at 24GHz, the required CFL length will be ~ 79.4mm.
This is different from Mazur’s 14.4mm at 27.3GHz [6],
and further work is in hand.

IV. CONCLUSION

It has been shown that, for any pair of coupled lines,
|¢2 — ¢1] = 180° (eqn. 10). In the case of the magne-
tized CFL, there is a complementary normal-mode un-
derstanding of its behaviour, where the conditions for
optimum operation are ¢1 o = +90° and (61 — G2)L =
%(142n) rad, where L is the length of the CFL section
and n is an integer. The circular/elliptical polarization
of the two normal modes seem to cause the unusual
modal phase difference between lines. Note that the
present work may also be understood from the CPW
point of view.

Further work would involve determining the
impedance of each normal-mode. Once successfully op-
timized, this distributed circulator would in principle
be compatible with MMICs and therefore would repre-
sent a potential breakthrough in nonreciprocal compo-
nent design.
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Figure 1: (a) Normalized powers Pi(z), P2(z) and phase
difference [£Vi(z) — £Va(2)] for ¢1 = —90°, ¢ = 490°.
(b) Cross-section of CFL section. Dimensions in millime-
ters: @ = 7.2, b= 3.4, w= ¢ = 0.5, hy = 0.127, hy = 0.5.
The permittivities are: finline substrate €4 = 2.22, ferrite
slab €7 = 13.5, and saturation magnetization M. = 340
kA/m. Ferrite is just saturated (H; = 0) (data from [6]).
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Figure 2: Solutions for coupled-slotlines:
(a) Propagation constants, with and withont magnetization
. (b) AB (see eqn. 4), without magnetization
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(d)-(f) E-field plots of mode 1, A/8 apart, with magnetiza-
tion. Field vectors below central strip are Right-Hand Circ.
Polarized (RHCP).
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